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Kinetic Theory of Field Evaporation of Metals
L.C. Wang and H.J. Kreuzer

Department of Physics, Dalhousie University
Halifax, N.S. B3H 3J5, Canada

Abstract - Starting from adiabatic energy curves, calculated as a function of elec-
tric field strength we develop a perturbational method to construct diabatic states
which form the basis to compute the temperature dependent ionization probabilities
for field evaporation of metals. Employing a master equation we calculate the
energy dependent ion yield as a function of field strength and temperature, and
extract the field dependence of the activation barrier and the prefactor. As a func-
tion of field strength the activation barrier for field evaporation decreases mono-
tonically for tungsten, whereas the prefactor increases up to a field strength of
4.5V/R for tungsten due to an increase in the ionization probability and then decre-
ases due to changes in the surface potrintial.
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1. Introduction
Field evaporation is the removal of lattice atoms from the surface of a field
emitter tip as singly or multiply charged positive ions in an electric field of the
order of volts per angstroms [1,2]. The term field desorption is usually reserved
for the process of removing field-adsorbed atoms or molecules from field emitter
tips [3-5]. Field evaporation and field desorption, crucial in cleaning and preparing
field emitter tips, are thermally activated processes; as such their rate constants
can be parametrized as

rd = av exp(-Q(F)/kBT) (1)

Here Q(F) is the field dependent height of the activation barrier to be overcome by
the desorbing particle. We have split the prefactor into an attempt frequency v and
an accommodation coefficient a, bnth being ficld :r also weakly temperature aepen-
dent. The minimum field strength beyond which the activation barrier vanishes, thus
leading to field evapration at low temperatures, is called the evaporation field
strength; it varies from 2.5V/R for Tito 6.1V/R for W with a typical experimental
error margin of 10-20 % [5]. Ernst has measured Q(F) and av(F) for Rh [6],and Kel-
logg [7] has presented data for W in the field range 4.7-5.9V/R.
Two phenomenological models have been proposed to calculate the activation energy
Q(F). In the "image-force" model [2] field evaporation is envisaged as the activation
of an ion of charge ne over an activation barrier that results from the superposition
of the field potential -neFz (assuming a constant electric field), and the image pot-
ential of the ion -ne/4z. In the "charge-exchange" model [81 one assumes that ioni-
zation and desorption occurs at the crossover point between the atomic and ionic
(diabatic) potential energy curves. A confrontation of these models with experimen-
tal data has been presented by Kellogg [7]; Forbes [9] has presented several criti-
cal assessments. An early microscopic calculation of Q(F) by Kahn and Ying [10] was
based on the local density approximation of the density functional theory, treating
the metal as a jellium. Kingham [11] has presented some preliminary results for the
field evapration of W obtained within a tight binding cluster model. Kreuzer and
Nath [12] have presented a microscopic theory of field evaporation in which the
electronic properties of the metal are calculated within a tight binding cluster
approach based on the ASED-MO method [13] with local electric fields taken from
selfconsistent jellium calculations [14,15]. They extract the activation energy Q(F)
from adiabatic ground state energy curves, and find a scaling law which predicts
evaporation field strengths within 10%-20% of experimental values.

To extend such ground state energy calculations to a kinetic theory of field
desorption and evaporation, Kreuzer et al. [16-18] have employed a master equation

to calculate the energy dependent ion yield in thermal field desorption as a function
of field strength and temperature, applying their method to thermal field desorption
of helium. In this paper we will briefly review this theory and then use it to study
field evaporation of metals.

In the next section we will review the calculation of adiabatic and diabatic

energy curves in the presence of high electriu fields at surfaces. The latter will
then serve as the framework to compute the temperature dependent ionization and
neutralization probabilities of atoms on the surface of a metal. In the last section
we will present numerical data for field evaporation of W. To summarize our res-
ults: we find, as in our earlier study [12], that the activation barrier against field
evaporation decreases (monotonically for most metals, such as tungsten, for which we

find good agreement with Kellogg's data [7]) whereas the prefactor initially incre-
ases (up to 4.5V/R for tungsten) due to an increase in the ionization probability, and

then decreases due to changes in the surface potential of the desorbing atom.
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2. Adiabatic and diabatic states
Field evaporation takes place predominantly at kink and step sites due to the fact
that electric fields are enhanced at such sites. To set up our theory we rather
consider a situation where a single metal atom is present on top an otherwise per-
fect crystal plane, a distance R away from the topmost ion cores. We will refer to
this isolated atom as the adatom. The hamiltonian of the system can be written as

H TN + He(r,,r 2,...;R) (2)

where

TN = 32/3R7 (3)
2M

is the kinetic energy of the atomic nucleus and

)12  + Ve(rj,ra,...;R) k4)
He =2m n rn2

n

is the hamiltonian of the electrons at positions r,,r 2 , ... Ve includes the Coulomb
interactions between the electrons, between the electrons and the nuclei, and
between all nuclei (metallic and atomic).

Let us fix the position of the adatom, thus setting its kinetic energy (3) equal
to zero. Physically this implies that the electronic degrees of freedom follow the
nuclear motion instantly. We can then diagonalize He (in practice, after approximat-
ing it, e.g., by a tight binding hamiltonian or using density functional theory) to
obtain

He(r,r 2 ,...;R) i(r,,r 2 ,...;R) = Vi(R) i(r,,r 2 ,...;R) (5)

where the i are adiabatic many electron wavefunctions. The lowest eigenvalue of

(5), Vo(R) represents the ground state of the system and corresponds to the adiabatic
binding energy curve. Lifting an electron from the highest occupied level (in the
ground state) to the lowest unoccupied one, generates the energy curve (or rather
surface, because R is a three-dimensional space coordinate) of the first excited
state etc.

To take the nuclear motion of the adatom into account we now proceed to con-
struct diabatic states. Returning to the hamiltonian (2) we try to diagonalize it by
solving Schr6dinger's equation

H T = Ea a (6)

via an expansion

Vcrj,r2,... = -- i(r,,r 2,...;R) Xia(R). (7)
i

Inserting (7) into (6), multiplying with 4i and integrating over the electronic deg-
rees of freedom, r,, r 2, .... , we obtain a coupled set of equations
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2M 2 + Vi(R) - E xio(R) -- L 2- - (T ( 2 )  + 2 T ( 1)2 M TRF 2 ij ij-R ja (8)

where

T( 1 )ij(R) = f (j(r,r,...;R) drdr2... (9)
, a2

T(2)ij ( R) = f T(,-, Cj(r,,r 2,...;R) dr~dr 2... (10)

are the matrix elements of the first and second order differential operators. Put-
ting the right hand side equal to zero results in the Born-Oppenheimer approximation
according to which the nucleus just moves in the i-th adiabatic potential.

To solve (8) amounts to obtaining an exact solution to the problem by diagonalizing
an infinite matrix. To reduce the task to manageable proportions one hopes that in a
given problem only a limited number of adiabatic states contribute to the set of
diabatic states involved in the process to be studied. E.g. in field desorption and
field evaporation, only the lowest diabatic states for a neutral atom and for ions
seem important. They can thus be obtaired by a unitary transformation from the cor-
responding adiabatic states. The latter being known explicitly from the tight bind-
ing or density functional calculations alluded to above, the problem is solved in
practice.

Let us introduce new states

X = A n()

where xT=(X1 ,X2 . ) is the transpose of the column vector X containing the adiabatic
states as its components and A is a unitary matrix which is an explicit function of
R. To obtain a diabatic solution of (8) we choose the transformation A such that the
first order derivative term vanishes, i.e. we impose the condition [19]

( +3 T 1 )) A = 0 (12)

We thus get from (8)

2 32
(- I R + W(R) - E) T - 0 (13)

where n are diabatic states. In (13) I is a unit matrix, E is diagonal and the dia-
batic interaction matrix, no longer diagonal, is given by

W = AtV A (14)

in terms of the adiabatic energy curves defined in (5). Dropping the coupling terms

Wij from (13) determines uncoupled diabatic states subject to

(- 32+ Wii(R) - Ei) niv = 0 (15)

2 M + i()- Fi
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Thus noiv is the vth eigenstate with energy Eiv of the ith diabatic potential Wii(R).
E.g. Woo would be the potential for a neutral atom approaching a surface, and W,,
that of an ion. The off-diagonal terms Wij couple these states together; in the
above example, W,, is responsible for ionization or neutralization.

Combining (7) and (11), we can rewrite the total wavefunction as

(r;R) = CT(r;R)x(R)
= IT(r;R)A(R)n(R)

T (r; R) n(R) (16)

introducing the diabatic many electron wavefunctions, T(r;R)-(oE,,...).
Before we continue with the explicit calculation of adiabatic and diabatic states,

we want to briefly discuss the meaning of these states. To this end we assume that
in the process of field desorption or field evaporation only two levels participate
with tha lower electronic states remaining unchanged as spectators throughout the
process. We denote by a the highest occupied single electron level with energy Ea
in the isolated adatom and by Om the lowest unoccupied level of the same symmetry
with energy Cm above the Fermi energy of the isolated metal. In the interacting
system of adatom plus metal these two levels combine to two molecular orbitals 09
and (De of lower and higher energy, respectively, see Fig.1. Assuming that we can
approximate the adiabatic many electron wavefunctions as Slater determinants, we
find that the adiabatic ground state wavefunction for N electrong

,(r;R) = I(1$2... N- 1 g (17)

is composed of the spectator states, i for i=1 .... N-1, and (Dg, whereas the lowest
excited many electron wavefunction

;,(r;R) = I(1P2... 4-1 e1 (18)

has Dg replaced by 4e. Assuming that with the adatom close to the metal ca is lower
than Cm, tg and 4'e are dominated by Oa and Om, respectively. Thus o represents a
many electron state in which both adatom and metal are in their respective neutral
ground states, whereas , describes a situation with an electron removed from the
adatom and put onto the metal.

We next look at a situation where, in the presence of an electric field the
adatom is so far away from the surface that ca is higher than cm. As a result the
molecular orbital 4 g is now mainly of *m character, whereas (e is mostly Oa, imply-
ing that , now describes a system with the adatom being ionic and the removed elec-
tron in the metal above the Fermi energy, whereas j represents neutral adatom and
metal.

In our previous paper [18] we had shown that for two relevant states the trans-
formation A in (11) can be represented by a unitary 2x2 matrix which can be written,
quite generally, as

ScosE(R) sinO(R)(A = -sinO(R) cosO(R)j (19)

Noting that the matrix T(I) is antisymmetric, we reduce the matrix equation (12) to a
simple vector equation
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<&o R 1> = - fdrzdr 2 ... *(rIr 2,...;R) -L ,(r,r 2 .... ;R)

(20)

which can be solved as a line integral

R

0(R) =-j dR'.<&,i .> (21)
JR, 3

Having O(Ro)=O implies that A(R 0)=I and thus that at Ro diabatic and adiabatic states
coincide which is the case far from the surface. The diabatic interaction matrix
(14) is now given explicitly by its components

Woo(R) = cos'0(R) Vo(R) + sin'O(R) V,(R) (22)

W11(R) = cos 2 e(R) V,(R) + sin 20(R) Vo(R) (23)

Wo,(R) = - sin2e(R) [Vo(R) - V,(R)] . (24)

To evaluate (21), we observed that in field desorption adatoms will leave the sur-
face along the steepest field gradient, i.e. perpendicular to the surface so that we
can neglect any lateral interactions and 0=0(z) depends on the distance z from the
metal only so that

O(z) = IO dzfdr 4g(r;z) 3/3z Pe(r;z) (25)

provided that the adiabatic many electron wavefunctions are given by Slater determi-
nants. This completes the construction of diabatic states for situations where two
states are important. We should note, however, that even in the case of thermal
field desorption of helium, this is not strictly true. Recall that field ionization
of the adatom can take place when its highest occupied level rises above the lowest
unoccupied level in the metal. For a given field strength, F, this happens, if the
adtom is at a distance zc(F). If the desorbing atom is at distances z larger than
zc, the electron can tunnel into higher unoccupied levels of the metal. Thus for
given F and z, only two states participate in the ionization process and thus in the
construction of diabatic states, although for the overall field desorption process a

band of metal states is relevant. Note, however that, because the tunneling proba-
bility decreases rapidly as a function of distance, this band of tunneling states is
rather narrow. Mimicking the metal by a finite cluster of metal atoms obviously
does not produce a band structure but only a set of discrete levels which one has to
broaden with a width corresponding to the width of the ionization zone

Dealing with thermal field evaporation of metal ions, the situation becomes more
complex because it is less evident how to assign molecular orbitals of the metal
plus adatom complex to either the adatom or the metal, particularly if the latter is
approximated by a finite cluster itself. Many states then become important corres-
ponding to different stages of ionization and, more importantly, of different outgo-
ing momentum. In principle, we can use the above formalism resulting in the con-
struction of large matrices A. Instead, we will advance a perturbative approach to
the construction of diabatic states that starts from the observation that the
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transfer of an electron from the adatom to the metal takes place when the highest
occupied level on the adatom rise6 above the Fermi level of the metal. If this hap-
pens with the adatom at position zc, we can linearize the energy of the highest
occupied level as

£a(z) = Em + AE(z) (26)

with AEE(zc) =0. We further write for the molecular orbitals, restricting ourselves
to two levels for the moment,

Pg = Cgm~m + cga~a

De = Cem~m + ceapa (27)

and get to second order

cgm = 1 1-(f--g)S
V-2 /T-fT f

1 f-gC ga --

= 1 1-(f+g)S

c I2 /T+f+g

cgm = 1 f+g (28)
/f /T+f+-g

where

f(z) = A(z)/(2(V-EmS)

g=/Th

V = <Omjhla>

S = <OmIOa> (29)

The transformation angle (25) is then given by
O(z) = 'tg-f(z) - /4(30)

where h is the single electron hamiltonlan. Having O(z), we can next calculate the
diabatic potentials Wij from (22-24). In particular, note that

V'-V, = -g(V-cmS) (31)

so that
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W"1 (z) = V(z) - CmS(Z) (32)

The diabatic many electron wave functions are then given by

o(r;R) = (cgmCOSo - cemsin) IIlDD2... N-1OmI
+ (CgacosO - ceasino) [41 42...(N-1¢aI

O(r;R) = (cgmsin O + cemCOsO) I( 4 2...N- m1 (33)
+ (Cgasino + ceacos O ) I2 .... IaN-1 (a3

where, with (30),

sino(z) = -VI/-f/g

coso(z) = Yr +f/g ( 3 4 )

so that (33) reduces, properly normalized, to

%o(r;R) = (-S2) - 1/2 ( 1'12...-N- sa l12...N-1 mIMl)

CI(r;R) = I (P1''2 . . . N -i m I  (35)

where S is the overlap of levels Oa and Om, as given in (29).
To assess this perturbative approach we have recalculated a few numbers relevant

for field desorption of helium from tungsten. E.g., in a field of 5.5V/

Woi(zc)=1.96meV using the exact transformation and 1.78meV employing the approximate
formula (32). In the relevant interval of z around zc the error is never larger than

30%.
We now want to generalize the perturbative approach to situations where several,

or many states on the adatom and in the metal participate in the ionization process.

We first rewrite tht interaction matrix of the hamiltonian in the diabatic basis as

W(R) = fdr _(r;R) He(r;R) T(r;R) (35)

and ass me again that the many electron wave functions can be approximated by
single Slater determinants. We denote by Oa the wave function oi' the higiiest occa
pied level on the isolated atom and by Om,k with k=1,2.... single electron wave func-

tions of energy cm k above the Fermi level of the isolated metal. To ensure ortho-

gonality, we define

Jda> = NaPmla> (36)

where the projection operator is given by

PM = 1- LIJm,k><Om,kl (37)

k

so that the normalization constant becomes



-9-

-2Na = 1 <¢m,k'a>2 (38)
k

The diabatic many electron wave function of lowest energy with both adatom and
metal neutral is then given by

o(r;R) = I(DD .. N 1a (39)

The excited states are described by

Ck(r;R) =-- V ', 2 ...N-1,m,kl1 (40)

having one electron transferred from the adatom t 1 the k-th level above the Fermi
energy of the metal. Writing the electronic hamiltonian as a sum of single electron
contributions

N
He(r;R) - -h(ri;R) (41)

i=1

and inserting (39) and (40) into (35) we get for the offdiagonal terms

Wok(R) = Na(Vk - Em,kSk) (41)

where

Vk = <4ajhIm,k> (42)

is the interaction between states Oa and Om,k, and

Sk = <¢al Cm,k >  (LI3)

is the overlap between them. This completes the perturbative approach tc the calcu-
lation of the diabatic interaction matrix (35).

5. Results
In our previous paper [18] we have outlined the derivation of kinetic equations that
control field ionization, field desorption and field evaporation. In particular, we
derived an expression for the yield of singly charged ions

Yion = -To+(p,v) exp(-Eo1/kBT)/ Zexp(-EOW/kBT) (44)
V 1.'

where [20]

2

Tij(v,w) 2/h I fdR nOlv*(R) Wij(R) nrjw(R)I A(Ei\-Ej r, ) (a5)

with

A(c,r) = T-' (r/2)/(c 2+r 2 /4) (46)
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Here -V is the half width of level j in Wjj due to phonon transitions. Because

T(iv,j jj) describes transitions between discrete states of the unperturbed hamiltonian,
care must be exercized to include the width of the initial state. This is done for-
mally by replacing the energy conserving 6-function by the Lorentzlan (46).

We will now report on numerical results on thermal field evaporation of tungsten
ions from a tungsten tip. The latter we model by a finite size cluster of tungsten
atoms, which, to mimick an isolated atom on a (111) surface, is chosen as three
atoms in a plane with one atom below the midpoint of the triangle, and a fifth one

in the symmetrical position above the plane. Our calculations are based on the
semi-empirical ASED-MO method, described in earlier papers [12, 18]; ionization ener-

gies and wavefunctions fo- W are those of Ref.[12] except that we have raised, in an
ad hoc manner, the ionization energies for the adatum by 1.5eV so that we can
describe by one set of parameters both the neutral and ionic state of this atom. In
this approach we unfortunately cannot incorporate the electric field in a selfconsis-

tent manner. However, because the local variation of the electric field is impor-

tant, we take the electric field from selfconsisLent calculations [14,15] for a

plane jellium metal using density functional theory assigning a Wigner-Seitz radius
rs=2.07 to tungsten. We then impose this field onto the cluster assuming that the

jellium edge is half a lattice spacing above the plane of atoms in our cluster.
To determine the transition probabilities (45) we must know the nuclear wave func-

tions, n)0 o and no,,, in the diabatic potentials, Woo and W11. To simplify the numerics
we have fitted a Morse potential to Woo, i.e.

Woo(z) = Ao(F) [exp[-2Y(z-zo)] - 2exp[-Y(z-z 0 )]] (47)

adjusting its parameters, A0(F), Y(F) and z 0 (F), as a function of field strength.

Likewise, we set

W1 (z) = Wc -eF(z-zc) )48)

for the diabatic curve of the ion. For both potentials the wave functions can be
given analytically.

Field evaporation being an activated process, it is instructive to parametrize the
ion yield rate constant according to the Polanyi-Wigner equation (1). In Table I we
present the relevant data. We note first that the activation energies for field eva-
poration, Q(F), are in good agreement with experiment. To put this into perspective,
we want to point out that this agreement depends on our choice for rs , as discussed
in [1],e.g. if we take rs=1.5 the calculated evaporation field strength increases bya
about 25% from its value at rs=2.07.

Turning next to the prefactor v(F) we first note its dependence on field strength.
In the early days of field ion spectroscopy it had been assumed that the prefactor
is independent of field strength [21]. However, Kellogg [7] has found a substantial

field dependence in field evaporation of tungsten. For thermal field desorption of
helium our theory [18] explained such a fiele , the result of the

changes in the shape of the surface potential in which helium is adsorbed. For field
evaporation this effect is also present albeit of lesser significance. To obtain a

better understanding, we recall that in thermal desorption in the absence of a field,
the desorption rate constant at low coverage can be written for desorption from a
mobile, nonlocalized adsorbate as

rd = Svzexp(-Ed/kBT) (49)

when hvz<<kBT, and as
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rd = S kBT/h exp(-Ed/kBT) (50)

when hvz>>kBT. From a localized adsorbate we get

rd = S 2"mas/kBT vxvxvzrxp(-Ed/kBT) (51)

where vx etc. are the vibrational frequencies of the adsorbed particle at the bottom
of the surface potential well in the x, y, and z directions. Note that the desorp-
tion rate also contains, due to detailed balance, the sticking coefficient S as a
measure of the efficiency of energy transfer between the solid and the adatom.

For field desorption and field evaporation the adatom must be thermally excited up
to the energy of the potential barrier; this is a process akin to thermal desorption.
Subsequently, it must get ionized. Thus the prefactor consists of two factors,
namely an ionization probability a(F) and an attempt frequency v(F). Their field dep-
endences are opposing each other in that oL(F) increases from zero in zero field to
one at "high " fields, whereas v(F) decreases. We can view this process as a parti-
cle localized in the excited level, i=Q(F), at the energy of the potential barrier
attempting with a frequency vi=Ei/h of that level to ionize with a probability a(F).
Because Q(F) decreases with F, so does Ei and thus vi. In addition, the hump of the
activation barrier and thus the region for ionization moves towards the metal for in-
creasing field resulting in an increasing ionization probability c(F). In Table 1 we
have estimated the critical energy level in W,,, asumed to be a Morse potential, and
find that e.g. for F=4.7V/R the adatom is in the 37th excited state when it attempts
to ionize. This level has a frequency v,,=2.86x10 14 - as opposed to the ground state
frequency v,=4.5x10'2s'. This compares rather well with the prefactor of
2.76x10 1

4s
-

1 obtained from the Polanyi-Wigner parametrization of the ion yield. This
argument should, however, not be taken too literally as other factors contribute to
the prefactor as one already knows from the simpler situation of thermal desorption,
cf. equations (49-51). In particular this estimate does not allows us tc extract
a(F) because it would obviously be larger than one, contrary to its definition. How-
ever, we can guess that for fields less than 4.5V/A the field dependence of a(F)
dominates, and most likely oL(F)=1 for larger fields, where the decrease in \(F)

becomes dominant.
Although our theory produces the right trend in the prefactor, namely decreasing

with increasing field for fields larger than 4.5V/R, as observed by Kellogg, there
are discrepancies in the absolute values in that the experimental data are substan-
tially lower except at F=4.7V/R. However, Kellogg warns that his prefactors have an

uncertainty of at least one order of magnitude. On the other hand, our theoretical
values may also be out by an order of magnitude due to several of our approxima-

tions, in particular neglecting lateral variations in the electric field which might
effect the localization of the adatom. Also recall that the master equation that
underlies (44) as derived in refs. [16,181,is restricted in its applicability to the
markovian limit. With prefactors of the same order (104s- ') as thermal phonon
assisted transitions in W,,, one should account for nonmarkovian effects by, e.g.,

using the Tsukada-Gortel equations [20],which will result in lower prefactors, but
most likely not more than one order of magnitude.

We would like to comment further on the difference in prefactors for field evapo-
ration of tungsten as opposed to thermal field desorption of helium. For the latter

case we found [18] prefactors increasing more or less exponentially from a low of
106s - 1 at F=4V/R to a high of 1012s- at 6V/R. This has been interpreted as due to an
increase in the ionization probability a(F) due to rapidly increasing overlap of wave

functions on the helium and in the metal. Afterall, in the same field strength
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regime the activation barrier for helium increases substantially whereas for metal
field evaporation the activation barrier decreases monotonically, i.e. for helium the
field enhances adsorption, at least up to 6V/R. Eventually, this enhancement ceases,
most likely around 7V/R due to the same effects that cause a monotonic weakening of
the surface bond for metals on metals, namely a draining of bonding orbitals into
the metal.

We have so far presented results on thermal field evaporation of singly charged
tungsten ions. Experiment, on the other hand, only detects W 3+ and W4+ ions. The
fact that our calculated prefactors are rather large, i.e. of the order of 1014S

-
1,

we take as evidence to suggest that the first ionization stage from W to W+ must be
the slowest, i.e. rate determining step. Because the tunneling rate into the metal
decreases rapidly with increasing distance, the higher ionization states cannot be
produced by tunneling into the metal as their abundance would in that case be decre-
ased over singly charged ions roughly by the ratio of the ionization rates. Thus
post ionization [24] happens at least several angstroms away from the surface, but
still in the high field region, by field ionization with the excess electrons tunnel-
ing into vacuum states rather than into empty metal states. Simple minded estimates
confirm this scenario although detailed calculations, e.g. for tungsten, are not ava-
ilable at this stage.

6. Conclusions
In this paper we have applied our recent theory of the kinetics of field ionization,
field desorption and field evaporation to study field evaporation of tungsten. We
have developped a perturbative method to calculate diabatic states from adiabatic
ones. We find good agreement of the field dependence of the activation barrier with
experimental data. We also find that the prefactor in the ion yield increases in-
itially (up to 4.5V/R for tungsten) due to an rapid increase in the ionization proba-
bility and then decreases with increasing field strength due to changes in the sur-
face potential. There is some discrepancy in the absolute value which must be
resolved by better experiments and by a better theory. For the latter, we are cur-
rently adopting a cluster programme based on the spin density functional theory to
more prcperly account for charged species by a better treatment of Coulomb effects.
We will then also present results for other metals to hopefully stimulate further
experiments.
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Table 1
Field dependence of the activation barrier, Q, and the prefactor, av, experimental
data from Ref.[7]. Also, the ground state frequency v, and the excited frequency vi
for which hvi=Q; for details see text.

Field Q(ev) k(sec- ') vo(sec - 1 ) n i  vi=(2ni+1)v,0
(V/A exp. calc. exp. calc. (sec- )

3.0 - 1.85 - 1 .01x1014  2.92xl0' 2  99 4.58x 0'14

3.50 - 1.72 - 1.83x10 1 4  4.93xI01 2  55 5.47x10 1
4

4.0 - 1.42 - 2.33x10 4  4.55x10' 2  49 4.54xI0 1
4

4.5 - 1.22 - 2.93xI0 4  4.62ci012  41 3.78xI0 1
4

4.70 0.90 1.17 3xi01 6  2.76xI0 4  4.52x1012  37 2.86xI0 4

4.93 0.60 0.85 1X1013  2.60xI0 1
4 4.00xi0 12  30 2.1 1xI0l

4

5.10 0.52 0.58 8xi012  2.21x10 1 4  3.51xI012  24 1.58xI0 1 4

5.30 0.35 0.41 7x10 1  2.25xI0 1 4  3.17x1012  18 1.lOxIl' 4

5.47 0.31 0.31 7x10"' 2.06x10 1 4  2.83x1012  15 8.30x1013

5.72 0.20 0.20 3x10 1 ' 1.66xI0 1
4 2.68xI012  10 5.37xI0 1 3

5.92 0.12 0.12 4x10 I I 5.46xI0 3 2.64xI0 12 7 3.82xI0 1 3
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Figure Captions

Fig.1: Adiabatic (Vi) and diabatic (Wii) potential energy curves and schematic drawing
of noninteracting (4a and 0m) and interacting (4g and *e) orbitals to illustrate the
discussion around equations (17-18).
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